## CORE MATHEMATICS (C) UNIT 1 TEST PAPER 9

- 1. Find, in its simplest form, the exact value of  $\frac{3}{2+2\sqrt{2}} \frac{3}{\sqrt{2}}$ . [4]
- 2. Differentiate with respect to x:

(i) 
$$(2x+3)(2-3x)$$
, (ii)  $(\sqrt{x})^3$ . [5]

3. The vertices of a triangle are P(-2, 2), Q(0, 6) and R(8, t).

Given that PQ is perpendicular to QR, find

(i) the value of 
$$t$$
, [3]

- (ii) the area of triangle PQR. [3]
- 4. (i) Given that  $x = \frac{1}{y^2}$ , express  $\frac{18}{y^4}$  in terms of x. [1]
  - (ii) Hence find the real value of y for which  $\frac{18}{y^4} + \frac{1}{y^2} = 4$ . [5]
- 5. Determine by calculation whether or not the line y + 2x = 1 is a normal to the curve  $y = 9 x^2$ . [7]
- 6. Given that  $f(x) = (x + 3)^2$ , sketch the following graphs on separate diagrams. In each case show the coordinates of the minimum point and any points where the graph intersects the x and y axes.

$$(i) y = f(x), [2]$$

(ii) 
$$y = 2f(x)$$
, [2]

(iii) 
$$y = f(x-3)$$
. [2]

(iv) 
$$y = f(x) + 3$$
. [2]

- 7. Given that  $f(x) = (5x^{-1} + 3x^{-2})^2 4$  where x > 0,
  - (i) find the value of x for which f(x) = 0. [6]
  - (ii) Find an equation of the tangent to the curve y = f(x) at the point where x = 1. [6]

## CORE MATHEMATICS 1 (C) TEST PAPER 9 Page 2

13x m The diagram shows a plot of land in the shape of a trapezium. The perimeter of the plot of land is 200 m. 12x m

- (i) Show that h = 100 15x. [3]
- (ii) Show that the area of the plot is  $150(a-(x-b)^2)$  m, where a and b are integers to be found. [6]
- (iii) Explain why this area is maximum when x = b, and hence state the largest area of the plot as x varies. [3]
- The points A, B and C have coordinates (-3, 4), (7, 4) and (5, 8) respectively. The straight lines  $l_1$  and  $l_2$  are the perpendicular bisectors of AB and BC respectively.
  - (i) Find equations of  $l_1$  and  $l_2$ . [6]
  - (ii) Find the coordinates of the point P where  $l_1$  and  $l_2$  intersect. [3]
  - (iii) Hence find an equation of the circle which passes through A, B and C. [3]

## CORE MATHS 1 (C) TEST PAPER 9: ANSWERS AND MARK SCHEME

1. 
$$\frac{3\sqrt{2} - 3(2 + 2\sqrt{2})}{\sqrt{2}(2 + 2\sqrt{2})} = \frac{-3\sqrt{2} - 6}{2\sqrt{2} + 4} = \frac{-3(\sqrt{2} + 2)}{2(\sqrt{2} + 2)} = -\frac{3}{2}$$
 M1 A1 M1 A1 4

2. (i) 
$$d/dx (6-5x-6x^2) = -5-12x$$
 B1 M1 A1

(ii) 
$$d/dx (x^{3/2}) = \frac{3}{2}x^{1/2} = \frac{3}{2}\sqrt{x}$$
 M1 A1

3. (i) 
$$4/2 \times (t-6)/8 = -1$$
  $t-6 = -4$   $t=2$  M1 A1 A1

(ii) 
$$PR = 10$$
, height = 4 so area = 20 B1 M1 A1 6

4. (i) 
$$18/y^4 = 18x^2$$

(ii) 
$$18x^2 + x - 4 = 0$$
  $(2x + 1)(9x - 4) = 0$  M1 A1 A1  
 $x = -1/2 \text{ or } 4/9$  Must have  $x > 0$ , so  $y = 3/2$  M1 A1 6

5. Line meets curve where 
$$9 - x^2 = 1 - 2x$$
  $x^2 - 2x - 8 = 0$  M1 A1  $(x + 2)(x - 4) = 0$   $x = -2$ ,  $x = 4$  M1 A1

Gradient of curve  $= -2x = 4$ ,  $-8$  at these points,  $\neq \frac{1}{2}$  so not a normal M1 A1 A1

7. (i) 
$$f(x) = 0$$
 when  $\frac{5}{x} + \frac{3}{x^2} = \pm 2$   $2x^2 - 5x - 3 = 0$  or  $2x^2 + 5x + 3 = 0$  M1 A1 A1   
  $(2x + 1)(x - 3) = 0$  or  $(x + 1)(2x + 3) = 0$   $x > 0$ , so  $x = 3$  M1 A1 A1

(ii) 
$$f(x) = 25x^{-2} + 30x^{-3} + 9x^{-4} - 4$$
 so  $f'(x) = -50x^{-3} - 90x^{-4} - 36x^{-5}$  B1 M1 A1  
At  $x = 1$ ,  $f(x) = 60$  and  $f'(x) = -176$   $y - 60 = -176(x - 1)$  B1 M1 A1

8. (i) Height of triangle = 
$$5x$$
 (5, 12, 13), so  $2h + 30x = 200$   $h = 100 - 15x$  B1 M1 A1

(ii) Area = 
$$30x^2 + 12x(100 - 15x) = 1200x - 150x^2 = 150(8x - x^2)$$
 M1 A1 A1  
=  $150(16 - (x - 4)^2)$   $a = 16, b = 4$  M1 A1 A1

(iii) 
$$(x-4)^2 = 0$$
 when  $x = 4$  and  $> 0$  otherwise, so area is max. at 2400 m<sup>2</sup> B1 M1 A1

9. (i) 
$$l_1$$
 is  $x = 2$  Mid-point of  $BC$  is  $(6, 6)$  B2 B1  
Gradient of  $BC = -2$  so  $l_2$  is  $y - 6 = \frac{1}{2}(x - 6)$  B1 M1 A1  
(ii)  $y = \frac{1}{2}(-4) + 6 = 4$   $P = (2, 4)$  M1 A1 A1  
(iii) Radius = 5  $(x - 2)^2 + (y - 4)^2 = 25$  B1 M1 A1